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Measuring Implied Volatility: Is an Average Better?

Abstract

Based on the law of large numbers, several options researchers have proposed using

(different) weighted averages of the implied standard deviations, ISD, calculated from numerous

options with the same expiry to obtain a single best ISD measure.  However, most commercial

providers use an average (and often an equally weighted average) of just a few at-the-money

ISDs.  We find that the practitioners’ restricted averages forecast slightly better than the broader

weighted averages from the academic literature but that neither group forecasts actual volatility

very well.  

We suggest an adjustment to the extant models which improves their forecasting ability

considerably.  We also suggest a new weighting scheme which yields better estimates on an out-

of-sample basis than any of the existing models (adjusted or unadjusted).   However, we also find

that because there is little independent noise in individual options ISDs (at least in the S&P 500

options market), there is little gain to averaging.  Consequently, individual option ISDs and

averages of just a few ISDs forecast almost as well as weighted averages of many ISDs and the

weighting scheme choice is relatively unimportant. 
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Measuring Implied Volatility: Is an Average Better?

In most options markets, numerous options with the same expiry but different strike prices

are traded.  When plugged into the appropriate pricing model, the price of each yields an implied

volatility of the underlying asset’s price over the remaining life of the option, i.e., an implied

standard deviation or ISD.   Since they are forecasting volatility in the same asset over the same

period, if markets are perfect and the pricing model is correct, implied volatilities calculated from

options with the same expiry but different strike prices should be identical and so should implied

volatilities from calls and puts.  In reality, however, puts and calls with the same expiry and strike

yield somewhat different ISD estimates and so do options with different strikes.  On the one hand,

there are persistent implied volatility patterns in many markets, i.e., the well known volatility

smile.  However, even in the absence of a smile, some implied volatility differences are expected

due to market imperfections such as bid-ask spreads, non-synchronous price observations

(between the option and the underlying asset), and discrete prices.  These imperfections would be

expected to cause the implied volatility calculated from a single option’s price on day t to differ

from the market’s true expectation. 

Based on the law of large numbers, several options researchers have advocated combining

ISDs from all available options with the same expiry to obtain a single measure of implied

volatility over the life of the option and have suggested several weighting schemes for doing so.1 

These authors argue that an average of the ISDs calculated from options with the same expiry

should be a more efficient estimator of the market’s true volatility expectation than that calculated

from any single option alone since noise from market imperfections should tend to average out. 

In other words, in a large sample, the noise can be averaged away and the more observations (i.e.,

options) used to estimate implied volatility the better.  
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Ignoring this advice, commercial vendors of implied volatility figures normally use only a

few at-the-money options to calculate implied volatility.  For instance, the implied volatilities

reported by Bloomberg are simple averages of the ISDs on the two closest-to-the-money calls (or

puts).  Knight Ridder sells implied volatility estimates which are simple averages of four ISDs, the

two closest-to-the-money calls and closest-to-the-money puts while the CBOE provides a

weighted average of the same four options.  While not stated explicitly, the likely rationale for this

parsimony is the volatility smile since persistent cross-sectional implied volatility differences imply

that the ISDs at some strikes are biased estimators of the market’s true volatility expectations.  By

choosing at-the-money strikes, practitioners are presuming that these yield more accurate

measures of implied volatility.  Many academic researchers use only a few strikes to obtain

volatility estimates as well.  For instance, among those studies basing their implied volatility

estimate on only one strike are: Lamoureux and Lastrapes (1993), Kleidon and Whaley (1992),

and Christensen and Prabhala (1998).

We show that neither the weighted averages of many options proposed in the academic

literature nor the averages of a few ISDs from at-the-money options provided by such services as

Bloomberg and Knight Ridder provide implied volatility estimates which accurately forecast

actual market volatility.  A relatively naive model in which recent past volatility is simply

extrapolated into the future provides forecasts which are either better than or almost as accurate

as those measures proposed in the literature or used in practice.

We find that both the “academic” and “vendor” models fail primarily because they do not

adjust for the ISD biases implicit in the smile.  Some of the academic or weighted average models

also fail because they give high weights to less efficient strikes.  However, we show that because

the bias persists, it is possible to obtain forecasts of future volatility based on the available ISD’s

which forecast considerably better than the extant models.  We do this by first correcting the

Black-Scholes implied volatilities for their persistent bias and then averaging together the

corrected ISDs.   We also propose a new weighting scheme in which the various ISDs are
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weighted by their estimated relative efficiency.  This new model forecasts better out-of-sample

than the existing models (either with or without our bias correction).   However, we find that, at

least in our market, options on S&P 500 futures, the weighting scheme matters little (after one

corrects for bias persistence) because there is very little noise in individual ISD estimates to be

averaged out.   While our weighting scheme is the best, it is not significantly better than other

models and it matters little whether one averages together many ISDs or just a few.

The paper is organized as follows.  In the next section, we review the literature on

combining information from numerous options with the same expiration date to obtain a single

best forecast of future volatility.  In section II, we describe our data, describe the exact ISD

models to be compared, and present our measures of forecast accuracy.  In III, we apply these

extant models to the S&P 500 options market over the 1988-1998 period and show that none

forecast actual stock market volatility very well.  In IV, we develop our alternatives and use them

to forecast volatility in-sample.  Out-of-sample results are presented in V.  In section VI, we

measure the efficiency gains due to averaging.  Section VII concludes the paper.

I.  Implied Volatility Estimators in the Literature

Most of the suggested schemes in the academic literature for obtaining a single measure of

implied volatility involve a weighted average of the implied volatilities calculated from numerous

options with the same expiry.  The law of large numbers provides the basic rational.  If the pricing

model is correct and option traders are rational, the implied standard deviation, ISDj,t, calculated

from option j’s price on day t equals the markets volatility expectation, EVt, plus a random error

term ,j,t, i.e., ISDj,t=EVt+,j,t.  If ,j,t is independently and identically distributed with mean zero and

variance F2 for all options j, then (as is well known) a simple average of the J ISDj,t, , has¯ISDt

mean EVt and variance F2/J.  The more options J used to calculate the average, the more efficient

is , i.e., the smaller its variance.¯ISDt
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While simple averages are often used in practice, e.g., Schmalensee and Trippi (1978),

Jorion (1995), and Weber (1996), most researchers who have addressed this issue argue that the J

ISDs are not equally efficient so that a weighted average is more appropriate. Let ISDj,t represent

the implied standard deviation calculated from the price of option j and the underlying asset on

day t.  Define  as a weighted average of the ISDj,t for J options with the same expiry:¯ISDt

If again ISDj,t=EVt+,j,t  and the ,j,t are independently distributed with mean 0 but different

variances, Fj
2, then the variance of is minimized by setting:¯ISDt

In other words, ISDs from options j with a relatively small variances, Fj
2, should receive larger

weights than high variance ISDs.  However, as equation 2 illustrates, even relatively inefficient

(i.e., high variance) options, help make more efficient and hence should be included in the¯ISD

calculation of .  Assuming independence, the variance of this  is .  Since¯ISDt
¯ISDt jJ

j'1 w 2
j F2

j,t

wj<1, the variance of  is reduced vis-a-vis the ISDs of the individual options.¯ISDt

If the errors, ,j,t are not independent, then the variance of  will be¯ISDt

where Fij,t is the covariance between ,i,t and ,j,t.  If thejJ
j'1 w 2

j F2
j,t % jJ

j'1 jj&1
i'1 2 wjwi Fij,t

covariances are negative (positive) the variance of  will be less (greater) than . ¯ISDt jJ
j'1 w 2

j F2
j,t

For instance, as pointed out by Fleming, Ostdiek, and Whaley (1995), measurement errors due to

non-synchronous prices will tend to be of opposite signs for puts and calls so the variance of a

simple average of the put and call ISDs should be less than half the average of the two.2  Suppose

the underlying asset trades more often than the options so that its closing price tends to be

observed later.3  If prices rise between the time the two option prices are observed and the time of

the observation of the underlying asset’s price, the implied volatility of the call will tend to be too
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low (,j,t<0) while the ISD for the put will tend to be too high (,i,t>0).  If both options are at-the-

money, the two errors should approximately offset.  

While agreeing on the theoretical superiority of a weighted average, researchers have

disagreed on the best weights, wj,t.  One scheme due to Latane and Rendleman (1976) is to set

weights equal to the option’s relative vega, i.e., wj,t = (MCj,t /MISDj,t)/[3j  (MCj,t /MISDj,t)] where Cj,t

is the price of option j on day t.4  Since vega  measures the sensitivity of option j’s price, Cj,t, to

changes in ISDj,t, the same noise in option prices Cj,t due to market imperfections should create

more noise in the implied volatilities of small vega options than in large vega options.  Hence,

weighting option j’s ISD by its relative vega should give more weight to the lower variance

options.  Since vega is maximized when the strike price is just slightly above the underlying asset

price, this scheme puts more weight on ISDs calculated from at-the-money options than options

based on deep in-the-money or far out-of-the money options.

Chiras and Manaster (1978) propose a variation on this in which the weights are set equal

to the option’s price elasticity with respect to ISDj,t, specifically wj,t = [(MCj,t /MISDj,t)(ISDj,t /Cj,t)]÷

[3j (MCj,t /MISDj,t)(ISDj,t /Cj,t)].  Due to the addition of the term (ISDj,t /Cj,t), this scheme puts more

weight on out-of-the-money options (with low prices Cj,t) than the vega weights model.  While the

reasoning for vega weights is clear, why high elasticity options should be more efficient is not

clear to us.

Beckers (1981) and Whaley (1982) propose estimating  by finding the single ISD¯ISDt

which minimizes  where BS refers to the Black-Scholes pricejJ
j'1 wj,t [Cj,t & BSj,t(ISD)]2

according to that ISD.  In Whaley’s model wj,t = 1/J while in Becker’s wj,t =  (MCj,t

/MISDj,t)÷[3(MCj,t /MISDj,t)].  According to Beckers, this is approximately equivalent to estimating

equation 1 where wj,t = (MCt,j /MISDj,t)
2÷[3(MCj,t /MISDj,t)

2].  In other words, it is approximately

equivalent to a traditional weighted average model in which the weights are the squared vegas.  In

fact we find that this ISD measure is most highly correlated (r=.99998) with a weighted average

model where the individual ISD’s are weighted by their relative vegas raised to the fourth power.
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Since the weights are approximately proportional to the vegas raised to a high power, this scheme

puts even more weight on close-to-the-money options than the vega weighting scheme of Latane

and Rendleman.

As noted above, while these procedures all seek to obtain ISD’s with little noise by

averaging together ISDs from a large number of options j, commercial providers normally use just

a few ISD’s from at-the-money options.  For instance, Bloomberg’s call and put ISDs are equally

weighted averages of the two nearest-the-money calls and two nearest-the-money puts

respectively.  Knight Ridder’s implied volatilities are an equally weighted average of four

individual option ISD’s, the two nearest-the-money calls and the two nearest-the-money puts. 

The CBOE’s Market Volatility Index, VIX, uses a weighted average of the same four ISDs but

weights them so that the mean strike equals the underlying asset price.5  While the procedures due

to Latane and Rendleman (1976), Beckers (1981), and Whaley (1982) put more weight on the

ISD’s from options which are near-the-money, the Bloomberg, Knight-Ridder, and CBOE models

focus on these exclusively.  While the commercial providers do not provide an explicit reason for

this choice, one possible rationale is the belief that ISD’s of away-from-the-money options are

biased, i.e., E(ISDj,t)ÖEVt for away-from-the-money options.  Nonetheless, restricting the set to

at-the-money options only would appear to ignore a lot of information and to forego most of the

efficiency benefits of averaging.

Several studies have compared some of these weighting schemes empirically with quite

different results.  Beckers (1981) found that, in the market for individual equity call options, the

ISD for the single call with the highest vega tended to forecast slightly better than Becker’s own

scheme and better than a weighted average with vega weights.  However, his data period was

quite short: October 1975 through January 1976.  Roughly consistent with Beckers, Feinstein

(1989) found that in the S&P 500 options market, the single nearest but out-of-the-money call

forecast marginally better than other models considered.  In contrast, Gemmill’s (1986) best

performing ISD was the single ISD calculated from a deep in the money call - a result which is
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inconsistent with all suggested weighting schemes.  Turvey (1990) found that in two commodity

options markets, soybeans and cattle, a weighting scheme with vega weights forecast better than

either an equally weighted model, elasticity weights, and a single at-the-money put.  Note that in

three out of four studies, a single ISD forecasts better that the averages that they consider -

certainly not a good sign for the averaging models.   None of these studies explore the reason for

this results or why one scheme forecasts marginally better than another.

II.  Data and Measures of Forecast Ability.

A.  Data

Our data consist of daily closing prices of S&P 500 futures and options on S&P 500

futures traded on the Chicago Mercantile Exchange from January 4, 1988 through April 30,

1998.6  Our data set begins January 4, 1988 for three reasons.  One, trading was light in the first

years (1983-1987) of the market so it may not have been as efficient.  Two, until serial options

were introduced in August 1987, only options maturing in March, June, September, and

December were traded.  After that date, we have a continuous monthly series.  Three, several

studies report a sizable, permanent shift in the smile pattern (from a smile to a sneer) after the

1987 market crash.

We utilize daily observations on options expiring within 10 to 35 trading days.  We

generally observe ISD’s calculated from the closest-to-maturity options but on the ninth day

before expiration we switch to the next contract since (1) the time value of short-lived options

relative to bid-ask spreads is small making the ISDs less stable, and (2) in order to determine how

well implied volatilities forecast actual realized volatility we need a sufficient sample of days over

which to calculate realized volatility. 

Each day we observe both calls and puts at a variety of strike prices for options with the

same expiration date.  In the S&P 500 options market, these strikes are in the increments of 5

points, e.g., 825, 830, 835 etc.   Since trading is light in some far-from-the-money contracts, we
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1
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T
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restrict our sample to the first eight out-of-the-money and first eight in-the-money contracts

relative to the underlying S&P 500 futures price.  In summary, for each day we collect data on up

to sixteen calls and up to sixteen puts.  However, since all 32 options do not trade each day, we

do not have 32 observations on all days.

Using Black’s (1976) model for options on futures, day t closing prices for both the option

and S&P 500 futures, and 3-month T-bill rates, we solve for the implied standard deviation, ISDj,t,

on each of the (32 or less) options j observed on day t.

 In order to test the ability of these ISDs to forecast actual volatility, we need a measure of

actual realized (or ex-post) volatility over this period, RLZt, which is calculated as the annualized

standard deviation of returns over the period from day t through the option expiration date:

where Rs= ln(Fs / Fs-1) and Fs is the closing futures price on day s.   As noted above, 10#N-t#35. 

Since all options j observed on day t expire on the same day, RLZ only has a t subscript.

B. Measures of Forecast Accuracy

We employ three measures of the ability of the various measures to forecast actual

volatility.  The first is the root mean squared forecast error defined as:

The second is the mean absolute forecast error:

Third is the mean absolute percentage error:
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MAPE '
1
T j

T

t'1

| RLZt &
¯ISDt |

RLZt

(6)

Obviously, RMSE puts more emphasis on large errors than MAE and MAPE.

C.  The ISD Models.

Using all of the (up to 32) individual ISDj,t’s available on day t  we compute measures of

 for each of the major models used in practice or proposed in the literature.  The ISD¯ISDt

measures which we examine are:

ISD4 - An equally weighted average of the two closest-to-the-money calls and two
closest-to-the-money puts.  This average of at-the-money options is that calculated
and sold by Knight Ridder and close to the measures reported by Bloomberg, who
reports averages for the two closest-to-the-money calls and two closest-to-the-
money puts.

ISDVIX -  A weighted average of the two closest-to-the-money calls and two closest-to-
the-money puts where the weights are chosen so that the average strike equals the
underlying futures.7  This is very similar to the Market Volatility Index distributed
by the CBOE except that the time-to-maturity of ISDVIX matches the horizon of
RLZ and the time-to-expiration of the other measures instead of being adjusted to
a constant one month horizon.8

ISD32  -  An equally weighted average of the ISDs calculated from all traded options with
the same expiry.  It is calculated using equation 1 with wj,t = 1/Jt where Jt is the
number of options observed that day.  If all 32 options are traded that day then Jt

=32.

ISDLR  - A weighted average of all traded options (up to 32) calculated using equation 1
where wj ,t = (MCj,t / MISDj,t)÷[3(MCj,t / MISDj,t)] .  In other words, each ISDj is
weighted by its relative vega as proposed by Latane and Rendleman (1976).

ISDCM  -  A weighted average of all traded options (up to 32) calculated using equation
1 where wj,t = (MCj,t / MISDj,t)(ISDj,t /Cj,t) ÷ [3(MCj,t / MISDj,t)(ISDj,t /Cj,t)].  This is
the weighted average based on elasticity weights proposed by Chiras and Manaster
(1978).
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ISDBW -  the  which minimizes  where Jt represents the¯ISDt jJt

j'1 [Cj,t & BS(ISDj,t)]
2

number of options traded that day (up to 32) and BS denotes the Black-Scholes
price.  This is the measure proposed by Whaley (1982) and similar to that
proposed by Beckers (1981).

As benchmarks, we also calculate two relatively naive non-ISD forecasting models:

HIS40 - The standard deviation of returns over the last 40 trading days.

CONSTANT -  .13 which is the approximate mean of RLZt over the 1988-98 period.

III.  Results

In Table 1, we report RMSE, MAE, and MAPE for each forecasting model over the

1988-1998 period.9  We also rank the models from best (1) to worse (8) by each criterion.  All

three measures of forecast accuracy tell basically the same story.  Among the ISD measures, the

two best are the two commercial measures based on the four closest-to-the money options, ISD4

and ISDVIX, with the latter forecasting slightly better.  Among the measures based on all traded

options, the best is ISDBW, which (while it is not exactly a weighted average) is roughly

equivalent to a weighted average with very high weights on at-the-money ISDs. It is followed by

ISDLR , which weights at-the-money options higher than other ISDs, ISD32, and ISDCM.  It is

clear that forecast accuracy is directly related to how much weight the model places on at-the-

money options.    

However, it is clear that none of the ISD models forecast volatility very well.  At the

bottom of Table 1 we report RMSE, MAE, and MAPE for the two naive forecasts:  CONSTANT

and HIS40.  The two naive forecasting models have the lowest MAE and MAPEs among the

eight models (although their lead over ISDVIX and ISD4 is slight) and their RMSE is almost as

low as that of ISD4 and ISDVIX.  Based on these results it would appear that implied volatility

contains little useful information regarding future volatility beyond the information from past

volatilities (a proposition that we will show to be untrue below).  According to the results in
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RLZt ' "0j % "1j ISDj,t % uj,t (7)

Table 1, the contest between the various ISD models seems to be more a question of which one is

the least worst - not which is the best.

IV.  A Better Model 

A.  Obtaining unbiased ISD measures.

We suspect that one reason the ISD models do not improve on HIS40 and CONSTANT is

because the ISDj,t are biased estimators of EVt.  We further suspect that the reason ISDVIX and

ISD4 forecast better than the models based on all 32 options despite the fact that they ignore the

information in all but at-the-money options is because the bias is worse in far-from-the-money

options.  Underlying the broad based models, such as ISDLR and ISD32, is the assumption that

for all j E(ISDj,t)=EVt, the market’s volatility expectation.  Given the volatility smile, it is clear

that this cannot be the case for all j.  In Table 2 we report time series means of ISDj,t over the

1988-98 period for all 32 options using the following nomenclature to identify calls and puts and

the strike price grouping.  The first letter, “C” or “P,” indicates a call or a put, the second, “I” or

“O”, indicates whether the option is in or out of the money, and the last digit, “1" through “8",

reports the strike price position relative to the underlying futures price where “1" is the closest to

the money and “8" is the furthest in- or out-of-the-money.  For example, CI3 indicates an in-the-

money call option whose strike price is the third (or 10 to15 points) below the futures price.

As reported in Table 2, the differences in the time series means of ISDj,t by strike price are

sizable.  The mean ISDs at the top of the smile are over 50% larger than those at the bottom.  The

null that the means of ISDj,t are the same for all j is easily rejected at the .0001 level.  Clearly, the

expected value of all ISDj,t cannot be the market’s volatility expectation EVt .

In Table 2 we also report results of the regression:
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ISD (

j,t ' "̂0j % "̂1j ISDj,t (8)

If ISDj,t equals the market’s expectation of volatility over the remaining life of the option, EVt,

then market efficiency implies that "0j=0.0 and "1j=1.0 in Equation 7.  Clearly, this null is rejected

for most j.  For all options j, "0j > 0 implying an upward bias and "1j<1 implying a downward bias. 

The latter bias normally predominates.

The regression results in Table 2 suggest a solution to the problem that E(ISDj,t)ÖEVt for

all j.  Assuming that realized volatility, RLZt, varies randomly around the markets expectation,

EVt, as market efficiency suggests and that the bias is a consistent linear function of expected

volatility, we define ISD*j,t as:

 where and  are the parameter estimates from equation 7.   In other words, if markets are"̂0j "̂1j

efficient and the bias is consistent linear function of expected volatility, then we can use equation

8 to obtain unbiased estimators of EVt.  We do this for each j using the parameter estimates in

Table 2.  

B.  The question of weights.

Assuming for the present that the bias in ISDj,t is predictable and linear so that the ISD*j,t

are unbiased, the logical next question is which weights, wj,t, to use to obtain summary estimates

ISDt using equation 1.  One possibility is to use the weights used in extant models.  We do this for

the three best ISD models from Table 2 using a * to designate that we replace the ISDj,t with

ISD*j,t in calculating the average.  For instance, ISD4*t is an equally weighted average of the four

closest-to-the-money ISD*j,t  while ISDVIX*j,t is a weighted average of the same four adjusted

ISDs using the VIX weights.   Applying vega weights to all 32 ISD*j,t, yields the revised measure:

ISDLR*t. 

However, the regressions in Table 2 suggest an alternative and theoretically appealing

weighting scheme.  The error term in equation 7 may be decomposed as follows:
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uj,t ' RLZt & ISD (

j,t ' (RLZt & EVt) % (EVt & ISD (

j,t) (9)

Var(uj) ' F2 % F2
j (10)

Market efficiency implies that the expectation error (RLZt - EVt) should be independent of all

information available at time t including (EVt - ISDj,t*), hence:

where F2 represents the variance of the expectational error (RLZt - EVt) and Fj
2 is the variance of

,j,t = (EVt - ISDj,t*) as defined in section I.  As shown in section I, the most efficient weighting

scheme according to statistical theory is one in which the weights are a function of Fj
2 as specified

in equation 2.  Since estimates of Var(uj) are available from the regression of RLZt on ISDj,t, given

an estimate of F2, we could obtain an estimate of Fj
2 from equation and then derive the optimal

weights using equation 2.

Unfortunately, we cannot estimate F2 since EVt is unobservable.  Given the size of the

variance of uj,t, we would expect the expectational error to account for most of uj,t but exactly

how much is unclear.  Consequently, we present results for four different weighting schemes

based on alternative assumptions about F2..  We proceed as follows.  First, among the 32 equation

7 regressions in Table 2, we find the one with the smallest error variance, .  Assuming thatVar(ûj)

F2 accounts for X% of this minimum variance, we estimate Fj
2 for all j using equation 10 and then

determine the optimal weights using equation 2.  We label the resulting ISD estimates, ISD(X)*t. 

This is done for X = 75%, 90%, 95%, and 99%.  A priori, we expect the latter three to be more

appropriate than X=75%.

Measures of forecast accuracy, RMSE, MAE, and MAPE are reported in Table 3 for

these seven models: ISDVIX*, ISD4*, ISDLR*, ISD(75)*, ISD(90)*, ISD(95)*, and ISD(99)*. 

For ease of comparison, we repeat the results for the comparable traditional ISD estimators from

Table 1: ISDVIX, ISD4, and ISDLR, and also HIS40.  
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The results are striking.  All seven new models based on the “corrected” ISDs predict

actual volatility much better than any of the existing models in Table 1.  They predict actual

volatility much better than the models used by commercial vendors and much better than those

proposed in the academic research literature.  They also predict much better than the naive models

(HIS40 and CONSTANT) in which past volatility is extrapolated into the future.  The average

percentage forecast error for ISD4 based on the raw ISDs is about 36% but when corrected or

revised ISDs are utilized (ISD4*), this falls to 26%.  ISDLR*’s MAPE is roughly 26% while

ISDLR’s was 44%.  Clearly, there does seem to be a persistent but predictable bias in the ISDj,t

which can be easily corrected resulting in much better estimates. 

Among our six alternative models, differences in forecast accuracy are small.  RMSE

varies from a low of .04635 for ISDVIX* to a high of .04672 for ISDLR* - a difference of only

0.8%.  MAPE ranges from a low of .2553 for ISD(99)* to .2594 for ISDLR* -  a difference of

only 1.6%.  Apparently the weights are of secondary importance once the ISDs have been

corrected.  Reasons for this will be explored in section VI.

In Table 4 we report average weights according to each of four models: the vega weights

model of ISDLR and ISDLR*, the elasticity weights model of ISDCM, and the error variance

models ISD(75)* and ISD(99)*.   We do not report weights for ISD(90)* and ISD(95)* since

they fall between those of ISD(75)* and ISD(99)*. Note that, if all 32 options are traded on a

given day, the equal weighting model ISD32 would assign a weight of 1/32=.03125 to each. 

However, all 32 options are not traded each day so all 32 do not enter into each calculation.  If

for instance only 25 are traded then the equal weights model would attach a weight of 1/25=.04 to

all.  For this reason the mean weights in Table 4 sum to more than 1.0.

Since vega is maximized when the strike price is just slightly above the underlying asset

price, ISDLR and ISDLR* place the greatest weights on ISDs calculated from at-the-money

options, CO1, CI1, PO1, and PI1.  In contrast the elasticities model places the greatest weight on

far out-of-the money options like CO8, CO7, and PO8.  Our error variance models, particularly
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ISD(99)* place the greatest weight on the ISDs with the lowest variances, i.e., the most efficient

of the 32 options.  These tend to be the options at moderately high strike prices, in other words

somewhat in the money puts and out-of-the money calls like CO6, CO7, PI4, and PI5.

Although, as reported in Table 4, weights vary considerably from one model to the next,

according to the results in Table 3 they do no make much difference once the ISDs are revised. 

The two of the best forecasting models according to Table 3 are ISD4* and ISD(99)* but they

apply extremely different weights.  While ISD4* gives a weight of .25 to ISDCO1, ISDCI1,

ISDPO1, and ISDPI1, ISD(99)*’s average weights are: .023, .022, .021, and .025 respectively -

10% or less of ISD4*’s weights.  While ISD4* assigns a zero weight to ISDCO6, ISDCO7, and

ISDPI4, ISD(99)*’s average weights are: .406, .176, and .106 respectively.  Yet ISD4* and

ISD(99)*  have virtually identical forecasting records.

In summary, the models which have been suggested in the literature for combining several

ISD estimates into a weighted average, such as ISDLR, ISDCM, and ISDBW, do not forecast

very well because the individual ISDs are biased measures of the market’s true expectation.  The

ISD estimates provided by commercial providers like Bloomberg and Knight-Ridder fail for the

same reason.  However, we find that the bias tends to conform to a predictable linear form

enabling one to use regression estimates to correct the bias.  After obtaining unbiased ISD

estimates, we propose combining the corrected ISDs in a weighted average in which the

individual ISDs are weighted according to their estimated efficiency.  However, the relative

weights appear not to matter much - at least in this market.

V.  Out-of-sample Results.

The results for the models in top half of Table 3 are all in-sample in that data for the entire

data period 1988-1998 was used to obtain the parameter estimates in Table 2 and these

parameters were then used to calculate the unbiased volatility estimates ISDj,t* which were then

used to calculate ISD4*t,  ISDVIX*t,  ISDLR*t, and the ISD(X)*t models.  In other words, we
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use parameter estimates of "0j and "1j which are not known until 4/30/1998 to form our volatility

measures each day t prior to that date.  Obviously, this assumes insight which market participants

do not in fact have prior to 4/30/1998.  Likewise, the error variance models, ISD(75)*, ISD(90)*,

ISD(95)* and ISD(99)*, use weights based on estimates of efficiency over the entire 1988-1998

period.   

Consequently, we next calculate the ISD4*t, ISDVIX*t, ISDLR*t, and the ISD(X)*t

models using only information available on day t and compare the results with those for ISD4t,

ISDVIXt, ISD32t, etc. over an identical period.  We use data over the four year period 1/4/88-

12/31/91 to obtain initial estimates of the regression parameters in equation 7.  These are used to

calculate ISDj,t* for all 32 j for each day from ½/92 to 6/30/92.  We also use the variances of the

error terms from these regressions to obtain the weights used to calculate ISD(75)*t, ISD(90)*t,

ISD(95)*t, and ISD(99)*t.  We use the same parameter estimates to calculate each model’s

forecast each day from ½/1992 to 6/30/1992.  On 6/30/92 we re-estimate the regressions using

data from 1/4/1988 through 6/30/1992 and use these to calculate the forecast each day from

7/1/1992 to 12/31/1992.  We proceed in this manner updating the parameter estimates every six

months through 4/30/98.

The resulting measures of forecast accuracy, RMSE, MAE, and MAPE, are reported in

Table 5 for all the ISD models.  All three measures of forecast accuracy yield virtually the same

results.  First, as in the in-sample results in Table 3, all the new models based on regression

corrected ISDs forecast much better than the traditional measures - both those touted in the

literature and the simpler models used by practitioners.  The mean absolute percentage forecast

error among the new models is 29% to 31% versus about 37% for the best of the extant models,

ISDVIX.  Second, the differences in forecast accuracy among the seven new models is again

relatively small though greater than the in-sample results in Table 3.  The mean absolute

percentage forecast error ranges from a low of 29.4% for ISD(99)* to 31.5% for ISD4*.  Third,

by all three measures, the best forecasting model is ISD(99)* followed by ISD(95)*, and
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ISD(90)*.  ISDVIX* which ranked first or second according to the in-sample measures in Table

3, forecasts slightly less well on an out-of-sample basis.

VI. The Gains to Averaging

As shown in section I, all the averaging schemes which have been suggested in the

literature are based on the presumption that the ISDj,t calculated from any one call or put j on day

t contain noise due to such factors as nonsynchronous trading, discrete prices, and bid-ask spreads

and that this noise may be “averaged out” by an appropriate averaging scheme over several

options.   This proposition makes so much intuitive sense, that it has gone unchallenged up to

now despite the fact that several studies reviewed in section I find that a single ISD forecasts

better than the weighted averages that they consider.

However, the results above call this presumption into question.  First, ISDVIX and ISD4,

which consider only four options, forecast better than ISD32, ISDLR, and ISDCW which

incorporate many more options.  Likewise ISDVIX* and ISD4* forecast better than ISDLR*.   

Second, the best of the models ISD(X)* based on the estimated error variances of the ISDj is

ISD(99)*.  This model assumes that (for the ISDj with the lowest estimated error variance) 99%

of the error variance is due to variation of actual volatility, RLZt, around the markets true

expectation, EVt, (an error which is common to all options j)  and only 1% to variation of ISDj,t*

around EVt.  It is only this latter error which can be “averaged out” and these results imply it is

minuscule.

To examine this issue more directly, we compare ISD4* to its four components.  As

before let uj,t = RLZt - ISDj,t*.  As shown in equation 10 above, market efficiency implies that the

variance of this forecast error term is:  where F2 represents the variance of theVar(uj) ' F2 % F2
j

expectational error (RLZt - EVt) and Fj
2 is the variance of ,j,t = (EVt - ISDj,t*).  Let u4t = RLZt -

ISD4t*.  Since wj,t = .25 for all j and t for ISD4t*, if the four measurement error terms are

independent, .  In other words the variance of ISD4*’s forecastVar(u4) ' F2 % (1/16)j4
j'1 F

2
j
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error should be equal to the variance of the expectational error (which is common to all ISDj*s)

plus one quarter of the average of the four Fj
2.  The gain in efficiency from averaging comes from

the final term averaging out the variation in the ISDj,t* around EVt.   If the Fj
2 are sizable and the

,j,t are independent, then Var(u4) should be less than the average of the four Var(uj).  That is the

variance of the average should be less than the average of the variances.  If virtually all of Var(uj)

is due to F2, not Fj
2, then there will be little difference between the average of the variances and

the variance of the average.

In Table 6 we present estimates of Var(u4) and Var(uj) for the four j on which ISD4* is

based.  We also present the average of the four Var(uj).
10  Interestingly, we observe that the two

ISD calculated from options with strikes above the underlying futures, CO1 and PI1, are more

efficient than the two ISDs calculated from options with strikes below the underlying futures and

more efficient than ISD4*.  More important, the variance of ISD4*’s forecast error, Var(u4), is

only slightly below the average of the four error variances, i.e.,  .0021497 versus .0021513.  The

implication is that either there is almost no noise, ,j,t, to be averaged out or the ,j,t are highly

correlated so that the noise cannot be averaged out.  Indeed if we assume that the four ,j,t are

independent, the implication of the figures in Table 5 is that 99.7% of the variation of RLZt

around an individual ISD*j,t is due to variation of RLZt around EVt and only 0.3% to

measurement errors in the ISDs.  In summary, contrary to the usual presumption, there is little to

be gained by averaging together ISD estimates from puts and calls and different strikes.

However, a caveat is in order.  The market for options on S&P 500 futures is very heavily

traded so bid-ask spreads are likely to be low.  Also S&P 500 futures and options on futures are

traded side by side on the Chicago Mercantile Exchange and both markets close at the same time. 

Consequently, nonsynchronous prices are unlikely to be a problem.  Averages of several ISDs

may be more efficient in less heavily traded markets where the observed trades in the options and 

the underlying assets are likely to be at different times.   
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VII.  Conclusions

In summary, neither the weighted averages models based on numerous ISDs, which have

been proposed in the academic literature, nor the averages of just a few ISDs, which are sold by

commercial vendors, forecast actual volatility very well.  The vendors’ restricted averages

forecast slightly better than the more elaborate models proposed in the academic research

literature but none forecast well. 

These models fail primarily because most ISD’s obtained from observed option prices

using the Black-Scholes formula are biased.  However, we show that these biases are persistent

and predictable so that it is possible to obtain an unbiased and efficient adjusted ISD from a raw

ISD with a simple linear transformation based on a regression of realized volatility on the raw

ISD.  Models based on these adjusted ISDs forecast actual market volatility much better than

either the ISD averages sold by commercial providers or the models in the literature and much

better than measures of historical volatility.

The regressions used to obtain unbiased ISDs also yield estimates of each ISD’s efficiency

which may be used to derive the error minimizing weights in a weighted average model.  This

procedure yields weighted average measures of implied volatility which forecast better than

existing weighting schemes out-of-sample.  However, the advantage of these new weighted

averages over a simple arithmetic average based on the four adjusted or unbiased nearest-the-

money ISDs is slight.  Finally we show that, at least in this market, the efficiency gains to

averaging are slight.  Either there is little noise in the individual ISD estimates or the errors are

highly correlated so that they cannot be averaged out.
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Table 1
Measures of Forecast Accuracy for Extant Volatility Forecasting Models

For various volatility forecasting models, we report three measures of forecast accuracy: the
root mean squared forecast error (RMSE), the mean absolute forecast error (MAE), and the
mean percentage forecast error (MAPE).  They are also ranked from the most accurate
forecast (1) to the least (8).  ISD4 is an equally weighted average of the ISDs for the four at-
the-money options; ISDVIX is a weighted average of the four at-the-money ISDs where the
weights are chosen so that the average strike is exactly at the money; ISD32 is an equally
weighted average of the implied standard deviations, ISD, from all (up to 32) traded that day;
ISDLR is a weighted average of all ISDs weighted by their vegas, ISDCM is a weighted
average of all ISDs weighted by their price elasticities, and ISDBW is the ISD measure
obtained by minimizing the sum of the squared pricing errors for the 32 options. 
CONSTANT=.13, and HIS40 is the actual volatility over the last 40 trading days.  The
forecast accuracy measures are calculated over the period 1/4/88 through 4/30/98.

Model
RMSE MAE MAPE

Level Rank Level Rank Level Rank

ISD4 .05454 2 .04065 4 .3616 4

ISDVIX .05441 1 .04051 3 .3597 3

ISD32 .06275 7 .05056 7 .4722 7

ISDLR .06022 6 .04730 6 .4362 6

ISDCM .06420 8 .05225 8 .4901 8

ISDBW .05599 4 .04249 5 .3821 5

CONSTANT .05522 3 .03995 1 .3587 2

HIS40 .05911 5 .04005 2 .3209 1
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Table 2
The ISD Bias by Strike Price

We report time-series means of ISDj, t.  We also report estimations of the regression: RLZt = "0j + "1jISDj,t +
uj,t where  RLZt is the ex-post realized volatility from day t through the expiration of the options and  ISDj,t is
the implied standard deviation for option j on day t.  Daily observations from 1/4/1988-4/30/1998 on S&P
500 futures options are utilized.  In the “Strike Price” column, the first letter © or P) stands for a Call or a
Put; the second letter (I or O) refers to In-the-money or Out-of-the-money; and the last digit indicates the
relative position of an option from the futures price where 1 indicates that the option is the nearest-to-the-
money.  * and ** designate parameters which are significantly different from zero at the .05 and .01 levels
respectively.  † and †† designate coefficients of ISDj,t which are significantly different from 1.0 at the .05 and
.01 levels respectively.  All are based on standard errors corrected for the serial correlation due to overlapping
data.  Tests of the intercept are two-tailed; those of the slope coefficients are one-tailed.

Strike Price Mean ISD ""0 ""1 Obs

Calls

CI8 0.2200 0.0691** 0.2696**†† 1,306
CI7 0.2110 0.0525** 0.3559**†† 1,475
CI6 0.2008 0.0357* 0.4532**†† 1,729
CI5 0.1913 0.0281 0.5264**†† 1,956
CI4 0.1816 0.0275* 0.5491**†† 2,248
CI3 0.1723 0.0247 0.6006**†† 2,447
CI2 0.1645 0.0245* 0.6375**†† 2,564
CI1 0.1568 0.0266* 0.6574**†† 2,596
CO1 0.1497 0.0293* 0.6695**†† 2,605
CO2 0.1443 0.0293* 0.6948**†† 2,605
CO3 0.1404 0.0280** 0.7233**†† 2,603
CO4 0.1382 0.0244* 0.7610**†† 2,575
CO5 0.1380 0.0208* 0.7826**†† 2,414
CO6 0.1411 0.0182 0.7901**†† 2,052
CO7 0.1459 0.0208 0.7666**† 1,592
CO8 0.1519 0.0306 0.7163**† 1,168

Puts

PO8 0.2269 0.0394* 0.3931**†† 2,487
PO7 0.2185 0.0345* 0.4350**†† 2,574
PO6 0.2071 0.0310* 0.4749**†† 2,595
PO5 0.1965 0.0297 0.5092**†† 2,603
PO4 0.1860 0.0274 0.5512**†† 2,609
PO3 0.1756 0.0269* 0.5869**†† 2,608
PO2 0.1658 0.0283* 0.6122**†† 2,605
PO1 0.1569 0.0297* 0.6358**†† 2,598
PI1 0.1493 0.0303** 0.6585**†† 2,547
PI2 0.1433 0.0297** 0.6838**†† 2,442
PI3 0.1405 0.0269** 0.7272**†† 2,085
PI4 0.1411 0.0221* 0.7706**†† 1,625
PI5 0.1448 0.0198 0.7805**†† 1,230
PI6 0.1520 0.0128 0.8056**† 972
PI7 0.1650 0.0322 0.6675**†† 694
PI8 0.1765 0.0538** 0.5255**†† 556
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Table 3
Measures of Forecast Accuracy for Alternative Volatility Forecasting Models

In-Sample Results

For various volatility forecasting models, we report three measures of forecast accuracy: the root mean
squared forecast error (RMSE), the mean absolute forecast error (MAE), and the mean percentage
forecast error (MAPE).  They are also ranked from the most accurate forecast (1) to the least (11). The
first seven models are based on bias corrected ISDs using the regression results in Table 2.  ISDLR*
weights these corrected ISDs by their estimated vegas.  ISD(75)*, ISD(90)*, and ISD(95)* weight the
ISD’s by their estimated efficiency based on the variance of the error term from the Table 2 regressions. 
The figure in parentheses is the percentage of the variation of actual volatility around the most efficient
ISD which is assumed to be due to an expectational as opposed to measurement error. ISD4 is an equally
weighted average of the four uncorrected at-the-money ISDs and HIS40 is actual volatility over the last
40 trading days.  Forecast accuracy is measured over the period from 1/4/88 to 4/30/98. 

Model RMSE MAE MAPE

Level Rank Level Rank Level Rank

bias corrected models:

ISD4* .04636 2 .03094 3 .2563 3

ISDVIX* .04635 1 .03090 2 .2557 2

ISDLR* .04672 7 .03120 7 .2594 7

ISD(75)* .04658 6 .03115 6 .2596 6

ISD(90)* .04647 5 .03104 5 .2580 5

ISD(95)* .04640 4 .03097 4 .2569 4

ISD(99)* .04637 3 .03089 1 .2553 1

traditional models:

ISD4 .05454 9 .04065 10 .3616 10

ISDVIX .05441 8 .04051 9 .3597 9

ISDLR .06022 11 .04730 11 .4362 11

HIS40 .05911 10 .04003 8 .3209 8
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Table 4
Option Weightings

We report the average weight each option receives in four weighted average models of the ISD: the
vega weights model attributable to Latane and Rendleman, the elasticity weights to Chiras and
Manaster, and two models based on the estimated error variance.  In the “Strike Price” column, the
first letter © or P) stands for a Call or a Put; the second letter (I or O) refers to In-the-money or Out-
of-the-money; and the last digit indicates the relative position of an option from the futures price
where 1 indicates that the option is the nearest-to-the-money.

Strike Price Vega (LR)
Elasticities

(CM)
Estimated Variance
75% 99%

Calls

CI8 0.0203 0.0040 0.0194 0.0072
CI7 0.0229 0.0044 0.0267 0.0116
CI6 0.0264 0.0049 0.0330 0.0169
CI5 0.0320 0.0059 0.0281 0.0131
CI4 0.0391 0.0072 0.0339 0.0177
CI3 0.0478 0.0092 0.0343 0.0178
CI2 0.0564 0.0126 0.0360 0.0192
CI1 0.0626 0.0176 0.0384 0.0215
CO1 0.0629 0.0251 0.0398 0.0230
CO2 0.0556 0.0360 0.0408 0.0242
CO3 0.0434 0.0507 0.0412 0.0247
CO4 0.0313 0.0683 0.0425 0.0261
CO5 0.0221 0.0845 0.0510 0.0397
CO6 0.0168 0.0959 0.0720 0.4059
CO7 0.0143 0.1035 0.0662 0.1760
CO8 0.0135 0.1083 0.0393 0.0202

Puts

PO8 0.0193 0.0896 0.0281 0.0126
PO7 0.0230 0.0816 0.0280 0.0126
PO6 0.0274 0.0726 0.0298 0.0139
PO5 0.0332 0.0631 0.0312 0.0149
PO4 0.0402 0.0533 0.0330 0.0164
PO3 0.0483 0.0435 0.0346 0.0178
PO2 0.0565 0.0339 0.0363 0.0193
PO1 0.0625 0.0250 0.0382 0.0213
PI1 0.0627 0.0174 0.0416 0.0250
PI2 0.0551 0.0116 0.0511 0.0409
PI3 0.0424 0.0078 0.0464 0.0318
PI4 0.0306 0.0058 0.0621 0.1058
PI5 0.0226 0.0047 0.0566 0.0712
PI6 0.0176 0.0038 0.0403 0.0231
PI7 0.0159 0.0036 0.0229 0.0082
PI8 0.0151 0.0035 0.0177 0.0058
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Table 5
Measures of Forecast Accuracy for Volatility Forecasting Models

Out-of-sample Results

For various volatility forecasting models, we report three measures of forecast accuracy: the
root mean squared forecast error (RMSE), the mean absolute forecast error (MAE), and the
mean percentage forecast error (MAPE).  They are also ranked from the most accurate
forecast (1) to the least (14).  The models are defined in Tables 1 and 3 and in the text. 
Forecast accuracy is measured on an out-of-sample basis over the period from ½/92 through
4/30/98

Model RMSE MAE MAPE

Level Rank Level Rank Level Rank

bias corrected models:

ISD4* .04122 5 .03141 7 .3149 8

ISDVIX* .04117 4 .03136 6 .3143 6

ISDLR* .04188 7 .03133 5 .3095 5

ISD(75)* .04137 6 .03086 4 .3035 4

ISD(90)* .04105 3 .03061 3 .3006 3

ISD(95)* .04081 2 .03042 2 .2981 2

ISD(99)* .04047 1 .03017 1 .2937 1

uncorrected models:

ISD4 .04460 9 .03560 10 .3686 10

ISDVIX .04446 8 .03545 9 .3665 9

ISD32 .05168 13 .04340 13 .4746 13

ISDLR .04957 12 .04117 12 .4436 12

ISDCM .05254 14 .04419 14 .4861 14

ISDBW .04596 10 .03712 11 .3890 11

HIS40 .04668 11 .03449 8 .3147 7
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Table 6
Measuring the Gains to Averaging

Variances of (RLZt - ISDj,t
*) are reported where RLZt is actual volatility over the remaining life

of the option and ISDj,t* is the implied standard deviation calculated from option j on day t and
corrected for its predictable bias using the parameters in Table 2.  We report variances for (1)
the four ISDj,t* s calculated from the four closest-to-the money options, and (2) the average,
ISD4t*, of these four ISDj,t*s. 

Measure of ISDj,t*
Variance of (RLZt - ISDj,t

*)

ISDCI1* 0.0021670

ISDCO1* 0.0021337

ISDPI1* 0.0021369

ISDPO1* 0.0021677

Average of the four above 0.0021513

ISD4* 0.0021497
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1.  Prominent among these would be Latane and Rendleman (1976), Chiras and Manaster (1978),
Beckers (1981), and Whaley (1982).

2.  See Fleming, Ostdiek, and Whaley (1995).  The same holds for errors due to imperfect
measurement of the interest rate.

3.  In the market for options on S&P 500 futures,  this would be the normal case.  In the market
for options on the S&P index itself, the options would normally be observed later.

4.  Actually Latane and Rendleman use a weighted geometric average not a simple weighted
average as in equation 1.  As a consequence, as shown by Chiras and Manaster (1978), their
weights do not sum to one and the resulting is biased toward zero.  However, since the basic¯ISD
idea of vega weights was theirs, we like some others, credit the version of equation 1 with vega
weights to them. 

5.  The VIX index also averages together these same four implied volatilities from two different
times-to-maturity to maintain a constant average term-to-maturity.

6.  Using options on futures rather than on the underlying index itself has a couple of advantages:
(1) both the options and futures markets close at the same time alleviating the problem of non-
synchronous price quotes, and (2)  the option price (and therefore implied volatility) does not
depend on assumed dividends. Of course, the S&P 500 index and its nearby futures prices are
very highly correlated.

7.  To illustrate the weighting scheme of ISDVIX suppose the underlying futures is 1004 and the
two nearest strikes are 1000 and 1005.  The call and put with a strike of 1005 would each receive
a weight of .4 while the call and put with a strike of 1000 would receive a weight of .1.  For a
fuller description and analysis of the VIX index, see Fleming, Ostdiek, and Whaley (1995).

8.  In calculating the VIX index, the CBOE averages together two ISDVIX measures.  One for
the nearby contract and one for the second nearby.  The weights are adjusted so that the average
term-to-expiration equals a constant 22 trading days.  Obviously that is inappropriate here since
the term-to-maturity of ISDVIX must match that of RLZ. 

9.  One of the four options used to calculate ISD4 and ISDVIX was not traded on 84 of the 2611
trading days in the 1988-1998 period so these are excluded from the sample leaving a final sample
of 2527 trading days. 

10.  All these variances as well as the Var(u4) are calculated over days on which all four options
traded so that ISD4t was based on all four individual ISDs.

ENDNOTES


